News | Opinion | Intelligence | Press Releases | Updates

Tag: Telecommunications

Cablenet selects Squire Technologies to consolidate its Fixed and Mobile voice network

Cyprus based quad-play operator Cablenet selects Squire Technologies’ virtualised Session and Media controllers to consolidate their Fixed and Mobile voice network.

 “Cablenet has always leveraged leading edge technology to support innovation, seamless service delivery and enable rapid network growth. By selecting Squire Technologies products we continue this trend. Not only will we be able to leverage the benefits of a virtual environment but also the benefits of an integrated solution from a single vendor.” – Panayiotis Kouloumbrides, Voice Network Manager, Cablenet.

Initially Cablenet was looking to replace its end-of-life Cisco PGW product but this soon widened to incorporate its incumbent Session Border Controllers. Squire Technologies innovative controller architecture allows media to be easily distributed both in legacy and IP networks. In a virtualised SIP network this can be further enhanced to provide automated load balancing, elasticty and failover.  

“Cablenet runs a high-end, forward thinking telecoms network. We understood that in the first instance Cablenet needed to migrate its existing products to a fully supported product set with a committed roadmap. Once the core services have been migrated we can then work with Cablenet to take advantage of our technology to optimise and innovate. We very much look forward to our continued partnership with Cablenet.” – Mike Peck, Global Sales Manager, Squire Technologies.

About Cablenet

Founded in 2003, Cablenet is the only independent alternative telecommunications provider in Cyprus and has grown rapidly to become a leading quad-play provider of broadband, television, fixed and mobile telephony services in the island. Cablenet continues to pioneer by virtue of its advanced technological infrastructure, its well-trained staff and the introduction of innovative applications of modern technology into the Cyprus market. 

About Squire Technologies Ltd

Operating since 2001, Squire Technologies Ltd provides product solutions and expertise in LTE, VoLTE, VoIP and SS7 markets to Fixed and Mobile operators, MVNO’s, Equipment Vendors, Integrators and Solution Providers in 100+ countries.

How a Diameter Routing Agent Works

A Diameter Routing Agent sits at the heart of a Diameter network. It provides scalable, centralised routing of Diameter messages in a multi-vendor, multi-node environment within a service providers IMS and LTE core.

We’ve produced a short video to provide an overview of how the DRA works…

The Diameter Routing Agent is the central routing point in any Diameter network providing flexible routing and message manipulation to insure inter-op between multiple devices and device vendors. At the same time it prevents overload and congestion of diameter traffic through sophisticated load balancing and routing algorithms whilst delivering graceful scaling to match network demand.

Find out more about Squire Technologie’s Diameter Signalling Products here.

Solving IoT Security – A Mixture of Innovative Technology and Sound Network Design

Ericsson predict that IoT devices will outnumber mobile devices this year in their IoT Forecast report. Furthermore they predict that the number of IoT devices will continue to grow at an annual compound rate of 21% to 2022 resulting in 18 billion IoT devices worldwide, 1.5 billion on mobile networks.

By then IoT devices will reside in every part of 21st century infrastructure with sensors in everything from critical infrastructure such as power stations, healthcare monitoring solutions, automobiles to your central heating. The sheer volume of devices, range of applications and the ever increasing need to deliver faster, better devices to stay ahead of the competition is causing a lot of people in the tech industry to scratch their heads with worry over security. So is this concern justified, or is it simply industry noise from technology vendors PRing their way to the next gravy train?

On 21st October 2016 the Mirai botnet was unleashed on an unsuspecting world. It exploited the processing power of 10’s of millions of internet connected devices, routers, IP cameras, printers, baby monitors etc worldwide to launch multiple Dedicated Denial of Service (DDoS) attacks on a company called Dyn, a DNS (Domain Name Services) provider in the US. Simply put DNS converts a website URL to an actual IP address so your browser can find websites. The result was that it blocked users from accessing websites for companies including Amazon, Paypal, Netflix, Airbnb, Spotify, Visa and many more. There’s little need to spell out the potential loss of revenue associated with this kind of breach, let alone reputation.

The IoT devices that were exploited by the Mirai botnet attack continue to be compromised. They are used daily to launch other, albeit less spectacular, attacks. The nature and complexity of cyber attacks continue to evolve, perceived weaknesses are constantly probed and methods of attacks orchestrated. As the IoT industry develops and number of devices increases we all have a right, not to mention good reason to be concerned with the security surrounding the Internet of Things.

Here we look at some of the security technologies and methodologies currently being deployed, developed and discussed in reference to IoT security…

Encryption, identification and integrity.
Any discussion on security will inevitably talk about encryption. IoT devices as a whole break down into two sub-categories “massive” and “critical”. Massive encompasses things like sensors that will be deployed on a massive scale, require low power, low bandwidth and be produced at low cost. These devices will have limited processing power and so will have limited capacity for encryption. The encryption industry as a whole has responded with the development of new “light weight” encryption algorithms. The US National Institute of Standards and Technology (NIST) is on version 3 of its light weight SHA (Secure Hash Algorithm). Mobile networks meanwhile, always constrained by bandwidth concerns if not processor capacities is in the process of adopting the underlying encryption technologies in their LTE networks that deliver the 3GPP based radio technology, NB-IoT (Narrow Band IoT).

At the critical end of the market the requirements are ultra-reliability, availability, low latency and high data throughput. The main focus is the integrity of the payload data not just its privacy. There are many technologies being muted to aid with this including PKI (Public Key Infrastructure), GBA (General Bootstrap Architecture), Blockchain, OAuth and OpenId. The one that’s making all the press, not least because it’s the technology behind Bitcoin is Blockchain.

Authenticating Blockchain
Blockchain can best be thought of as a ledger, where additions can be made at any point in time, and once added provides a permanent record of the transaction. This ledger is physically delivered over a distributed database. Take the example of an IoT device being used in the healthcare sector, perhaps to monitor patients blood pressure, temperature etc where this sensitive data is then fed back into a central monitoring system accessed by healthcare professionals. By using blockchain technology it’s possible to record at the IoT device level not only the sensitive information, but a time stamped signature for the device itself. This ensures the central monitoring application is able to authenticate the integrity of the payload by only accepting data from an officially recognised signatory as opposed to a rogue IoT device.

The Immune System & Healthcare Services
The constantly evolving nature of security threats and the unyielding pressure of staying ahead of the competition mean that devices are being constantly updated or patched. ARM, one of the leading semiconductor manufacturers are working with industry groups like the IETF to standardise firmware over-the-air (FOTA) to insure that updates are signed and only accepted from the vendor.

ARM go much further than this with their IoT Security Manifesto. They advocate modelling IoT Security on the way a biological virus outbreak is dealt with. Our immune systems react to a virus with an automatic, localised and targeted response. Stopping the spread of a virus to the rest of the population is a problem for healthcare services offering people ways to treat the virus faster and more effectively than the body can do alone. They advocate that IoT networks mimic the immune response with detection at the network edge nodes with sensors for unusual behaviour that can then block or quarantine nefarious traffic. The healthcare services are analogous to a large network monitoring system constantly looking for patterns and unusual behaviour. It would create alerts for any issues found resulting in human intervention or automatic quarantine and updates being applied.

Sounds familiar?
Hang on, this is very familiar… Telco networks are from first principle designed to deliver a network topology analogous to the “immune system” design. First and foremost, unlike all-IP networks the Telco networks are designed with the control plane distinctly separate from the payload. The control plane signalling is “out-of-band” meaning decisions on the delivery of the payload can be made prior to any payload being delivered. This way any nefarious payload is intrinsically kept at the edge of the network. Border controllers (Session Border Controller’s, Diameter Edge Agents, gateways) are the point of entry for all traffic on a Telco network. They guard against hostile attacks, hide the internal network topology, smooth and normalise traffic anomalies to ease subsequent processing by internal functions. If the connecting device appears “compliant” it is then immediately authenticated against the home networks device / subscriber database to establish if it is allowed on the network.

Monitoring and Big Data
Telco networks of any size always have network monitoring tools in place. Probes and collectors through the network collect data and statistics on everything from throughput and resource status to transaction records. Sat on top are sophisticated analytics platforms allowing operators to collate this information triggering calls-to-action on identification of problems. The application of Big Data and AI to this field is allowing more sophisticated pattern matching and early identification of issues, which in turn allow more pro-active, pre-emptive solutions to be deployed.

The major mobile carriers are already poised to take their share of the IoT market. They are not only offering the network but the massive and critical IoT devices themselves all nicely wrapped up with user centric management systems. Talking recently with a European operator it was interesting to learn how they have launched their IoT network by basically taking a copy of their IMS core, (with a little help from their recently deployed virtual network platform), through-which they plan to run this in isolation to gauge take up, safe in the network knowledge they can orchestrate resources should it become a run away success. Longer term they were thinking they might integrate back into their core network but the jury on that is still out.

The point is the IoT opportunity is here, and the press is abound with articles purporting the benefits applications utilising IoT will bring to us all. But, and it’s a big but, sentiment will turn and reputations will be lost if there’s case-after-case of damaging security breaches. The maxim we hear time and again from seasoned network security professionals is “keep it simple”. Sure providers have to take advantage of the latest advancements on offer in the fields of authentication and cryptology, but take a step back first and get the fundamental design of the network right. To this end IP-only IoT application providers should study and adopt the IMS network topology for their core network design.

SMS growth with IoT, AI and the Golden Goose

Fresh from the Messaging & SMS World show in London this week it was interesting to understand the potential fit for SMS within the rapidly developing IoT and AI landscape.

There was much discussion in terms of IoT and SMS at this year’s event, and it’s long been established that for many IoT applications SMS is, and is likely to remain as the default modus operandi, particularly within vehicle management. SMS powered IoT devices suck a lot less power than ones that rely upon constant cloud access making safety critical applications an obvious choice, and in-turn providing a multitude of opportunities from healthcare to energy for SMS growth in the future.

It was interesting to hear speakers and delegates discuss the complementary ways in which SMS can ultimately support IoT and how it’s seen as a failsafe mechanism in the event of failure to access the cloud, particularly relevant to safety critical applications.

More subtle is the use of SMS as a way for IoT manufacturers to communicate with their customers. Security is, as ever, a high priority, and with recent high profile DDoS attacks being staged from IoT devices it’s an area that IoT developers and manufacturers need to get right.

Your average consumer is not focused on network security as they install their latest IoT devices, yet manufacturers clearly cannot afford to ship all devices with default username and password settings.SMS can be effectively utilised by IoT vendors to communicate with consumers to insure they register and authenticate their IoT devices. Furthermore as evidence of network fatigue on apps that push notifications to consumer’s mounts, SMS can help guarantee the delivery of instructions surrounding ongoing critical software updates for devices.

Next up, and as ever a hot topic at the event was the big ‘AI’, specifically machine learning and bots. To be honest Artificial Intelligence is being strewn around as click bait across pretty much all tech sectors. At Messaging & SMS World we were presented with a pitch from a vendor claiming that their machine learning, artificially intelligent software would allow operators and aggregators to monitor SMS traffic, classify it, apply profiles and then the software would learn what was profitable and automatically manage this traffic, helping to block/reduce spam and low value traffic. To many this all simply sounded like big data analysis and pattern matching software, which SMS firewall vendors have been doing successfully for some time. Watch this space.

Bots again are attracting a lot of press coverage, however in the Telco sector there is cause for cheer on this front from the likes of T-Mobile who are successfully reducing churn by using bots to essentially frontend their support FAQs. It would follow that you could augment SMS interactions using bots. A vendor at the event described how they were successfully using SMS bots in conjunction with financial institutions to increase sales of their products in developing markets. The premise of this interaction seems to be that consumers weren’t always sure whether they were talking to a real person or a machine. But hey who cares, as long as you get a sale? Even the panel moderator raised the question of ethics on this one.

This leads us nicely back to the fundamentals of why A2P SMS is seeing such growth and why we must be careful not to kill the goose that lays the golden eggs. My appointment reminder from my dentist, notification that my Amazon parcel has been shipped, and that there’s been unusual activity I need to verify on my bank account are genuinely useful to me. With SMS being ubiquitous across all mobile devices I don’t have to download yet another app or dive into multiple chat groups to retrieve messages, and unlike my email my SMS is relatively immune from spam. Long may this remain, and long may A2P SMS drive growth and instill confidence in this corner of the Telco market.

  • 1
  • 2

Let's talk

+44-1305 757314

64 High West Street, Dorchester
Dorset, DT1 1XA
United Kingdom

© Squire Technologies Ltd 2017. All Rights Reserved.